Optimization of Glucose Loading Time and Alloxan Dosage for Inducing Stable Diabetes

Rina Delfita

Abstract


Optimization of alloxan dosage is essential for inducing long-term and stable diabetes in experimental animals for diabetes testing. The purpose of this study is to determine the optimum of glucose loading time and alloxan dosage for inducing stable diabetes. Glucose loading times were evaluated at intervals of 30, 45, and 60 minutes following the administration of glibenclamide to male Wistar rats that had previously undergone fasting and received a glucose load of 1.35 g/kg.bw. Blood glucose levels were assessed at 0, 30, 60, 90, 120, and 180 minutes after glucose loading. The determination of the optimal glucose loading time was based on the AUC0-180 value calculated from blood glucose measurements using the trapezoidal formula. Intraperitoneal administration of alloxan at doses of 100, 120, 125, 135, and 150 mg/kg of body weight was conducted (n=6). Diabetes status was determined by assessing blood glucose levels on days 0, 7, 14, and 21, and the count of live rat, diabetic rat, and stable diabetic rat was recorded. The optimal timing for glucose loading in glucose tolerance testing (OGTT) with glibenclamide is 60 minutes after drug administration. Alloxan doses of 125, 135, and 150 mg/kg demonstrated consistent and stable diabetic outcomes, with the 125 mg/kg dose producing the highest number of stable diabetic rat. Consequently, the optimal timing for glucose loading is 60 minutes after drug administration, and the optimal alloxan dose for inducing stable diabetes is 125 mg/kg.bw.


Keywords


Alloxan; Diabetes; Glucose Loading Time Optimization; Oral Glucose Tolerance Test.

Full Text:

PDF

References


Ashok, D., . S. N. P., . P. M. G., & . A. U. A. (2007). Optimization of Alloxan Dose is Essential to Induce Stable Diabetes for Prolonged Period. Asian Journal of Biochemistry, 2(6), 402–408. https://doi.org/10.3923/ajb.2007.402.408

Boylan, J. M., Brautigan, D. L., Madden, J., Raven, T., Ellis, L., & Gruppuso, P. A. (1992). Differential regulation of multiple hepatic protein tyrosine phosphatases in alloxan diabetic rats. Journal of Clinical Investigation, 90(1), 174–179. https://doi.org/10.1172/JCI115833

Chaimum-aom, N., Chomko, S., Talubmook, C., & Chaimum-aom, N. (2017). Toxicology and Oral Glucose Tolerance Test ( OGTT ) of Thai Medicinal Plant Used for Diabetes control , Phyllanthus acidu s L . ( EUPHORBIACEAE ). 9(1), 58–61.

Cheng, K., Li, Y., & Cheng, J. (2018). The Areas Under Curves ( AUC ) used in diabetes research : Update view. Integrative Obesity and Diabetes, 4(3), 1–2. https://doi.org/10.15761/IOD.1000212

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., Rocha, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas : Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281.

Delfita, R., Dahelmi, D., Tjong, D. H., & Suhatri, S. (2022). Protective effect of Enhydra fluctuans DC. aerial against insulitis in alloxan-induced diabetic rats. Journal of Research in Pharmacy, 26(1), 180–188. https://doi.org/10.29228/jrp.115

Delfita, R., Tjong, D. H., Dahelmi, D., & Suhatri, S. (2021). Hypoglycemic effects of Enhydra fluctuans aerial extract on alloxan-induced diabetic rats. Journal of Physics: Conference Series, 1940(1), 012058. https://doi.org/10.1088/1742-6596/1940/1/012058

Dewalkar, L., & Masram, S. (2018). Standardization of Alloxan Dose To Induce Stable Experimental Diabetes in Rattus Norvegicus. World Journal of Pharmaceutical Research, 7(01), 1596–1601. https://doi.org/10.20959/wjpr20181-10630

Elsner, M., Tiedge, M., Guldbakke, B., Munday, R., & Lenzen, S. (2002). Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia, 45(11), 1542–1549. https://doi.org/10.1007/s00125-002-0955-x

Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656–662. https://doi.org/10.1016/j.biopha.2018.09.058

Ighodaro, O. M., Adeosun, A. M., & Akinloye, O. A. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina (Lithuania), 53(6), 365–374. https://doi.org/10.1016/j.medici.2018.02.001

Internation Diabetes Federation. (2019). IDF Diabetes Atlas, 9th Edition. In Dunia : IDF (9th ed.). International Diabetes Federation.

Jain, D. K., & Arya, R. K. (2011). Anomalies in alloxan-induced diabetic model: It is better to standardize it first. In Indian Journal of Pharmacology (Vol. 43, Issue 1, p. 91). https://doi.org/10.4103/0253-7613.75684

Jörns, A., Munday, R., Tiedge, M., & Lenzen, S. (1997). Comparative toxicity of alloxan, N-alkylalloxans and ninhydrin to isolated pancreatic islets in vitro. Journal of Endocrinology, 155(2), 283–293. https://doi.org/10.1677/joe.0.1550283

Lenzen, S., & Munday, R. (1991). Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochemical Pharmacology, 42(7), 1385–1391. https://doi.org/10.1016/0006-2952(91)90449-F

Malaisse, W. J., Malaisse-Lagae, F., Sener, A., & Pipeleers, D. G. (2006). Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proceedings of the National Academy of Sciences, 79(3), 927–930. https://doi.org/10.1073/pnas.79.3.927

Mandlik, R. V, Desai, S. K., & Naik, S. R. (2008). Antidiabetic activity of a polyherbal formulation ( DRF / AY / 5001 ). Indian Journal of Experimental Biology, 46(August), 599–606.

Masuda, Y., Vaziri, N. D., Li, S., Le, A., Hajighasemi-Ossareh, M., Robles, L., Foster, C. E., Stamos, M. J., Al-Abodullah, I., Ricordi, C., & Ichii, H. I. (2015). The effect of Nrf2 pathway activation on human pancreatic islet cells. PLoS ONE, 10(6). https://doi.org/10.1371/journal.pone.0131012

Szkudelski, T. (2001). The Mechanism of Alloxan and Streptozotoci Action in β Cells of The Rat Pancreas. Pysiol Res, 50, 536–546. https://doi.org/10.1111/j.1464-5491.2005.01499.x

Szkudelski, T., Kandulska, K., & Okulicz, M. (1998). Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiological Research, 47(5), 343–346.

Yoshioka, K., Yokoh, S., & Yoshida, T. (1998). Low carbohydrate intake and oral glucose-tolerance tests. Lancet, 352(9135), 1224–1225. https://doi.org/10.1016/S0140-6736(05)60566-1




DOI: http://dx.doi.org/10.31958/js.v16i1.10588

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Rina Delfita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indexed by:

        

 

__________________________________________________________________________

Sainstek: Jurnal Sains dan Teknologi
ISSN 2085-8019  (print) | 2580-278x  (online)
Published by Institut Agama Islam Negeri Batusangkar

Email: [email protected]


View Sainstek Stats

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.