KEKONVERGENAN BARISAN INFINITESIMAL

Authors

  • Dona Afriyani Program Studi Tadris Matematika STAIN Batusangkar Jl. Sudirman No. 137 Kuburajo Lima Kaum Batusangkar, Sumatera Barat 27213

DOI:

https://doi.org/10.31958/js.v2i1.12

Abstract

This article was to find descript methode theory with number of Sequences. Base on theory has found the relationships it, are if   has a free infestimal sequences line each other, then number of intestimal konvergencies with distribution of free variable in a function  at conditions.

 

Key words: infestimal sequences, convergen, characteristic of function

Author Biography

Dona Afriyani, Program Studi Tadris Matematika STAIN Batusangkar Jl. Sudirman No. 137 Kuburajo Lima Kaum Batusangkar, Sumatera Barat 27213

Program Studi Tadris Matematika STAIN Batusangkar

Jl. Sudirman No. 137 Kuburajo Lima Kaum Batusangkar, Sumatera Barat 27213

References

Bhat B, Ramdas. 1981. Modern Probability Theory. Wiley Eastern Limited: New Delhi.

Chow YS, Teicher.1988. Probability Theory. Springer_Verlag: New York.

Dudewicz EJ, Mishra, SN. 1995. Statistika Madematika Modern. ITB: Bandung.

Freund’s JE. 1999. Mathematical Statistics. Sultan Chand & Sons: New Delhi.

Gupta SC, Kapoor VK. 1982.Fundaentals of Mathematicals Statistics. Sultan Chand & Sons: New Delhi.

Syafriandi M, Putra AA. 1999. Statistika Dasar. Universitas Negeri Padang: Padang.

Laha RG, Rohatgi VK. 1979. Probability Theory. John Willey & Sons: New York

Published

2010-06-01

Issue

Section

Artikel