Utilization of Biomass as a Source of Activated Carbon for Supercapacitor Applications: A Review

Authors

  • Fena Retyo Titani Fena Politeknik Negeri Sriwijaya
  • Fia Dhatul Prima Kusuma Fia Politeknik Negeri Sriwijaya

Abstract

Research on activated carbon generated from biomass as a possible supercapacitor electrode material has increased in response to the growing need for sustainable energy storage solutions. Recent advancements in the synthesis, activation, and electrochemical performance of activated carbon derived from biomass are covered in this review. Carbonization and chemical activation employing agents like KOH, H₃PO₄, ZnCl₂, and CaCl₂ which have a major impact on pore structure and surface area are the usual steps in biomass activation. CaCl₂ activation creates mesoporous structures that facilitate rapid ion diffusion and enhanced capacitance, whereas KOH and ZnCl₂ activation often yield the largest surface area with dominant micropores. Electrochemical stability and electrical conductivity are further improved by nitrogen doping. The selection of electrolyte is also crucial; ionic liquid electrolytes, such EMIM-BF₄, offer greater thermal stability and broader voltage windows, while aqueous electrolytes, including H₂SO₄ and KOH, offer high capacitance because of their high ionic conductivity. Depending on the pore shape and activation technique, biomass-based carbons have been reported to have specific capacitances ranging from 250 to 450 F/g. All things considered, a successful method for creating high-performance, sustainable electrode materials for next-generation supercapacitors involves combining appropriate activation agents, heteroatom doping, and optimal electrolytes.

References

Ahmed, S., Ahmed, A., & Rafat, M. (2018a). Impact of aqueous and organic electrolytes on the supercapacitive performance of activated carbon derived from pea skin. Surface and Coatings Technology, 349(February), 242–250. https://doi.org/10.1016/j.surfcoat.2018.05.073

Ahmed, S., Ahmed, A., & Rafat, M. (2018b). Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. Journal of Saudi Chemical Society, 22(8), 993–1002. https://doi.org/10.1016/j.jscs.2018.03.002

Ba shbil, A., Yennappa Siddappa, N., Daddi Suraiah, S., Honnu, G., Siddappa Pujar, V., Sharanappa, S., & Hundekal, D. (2025). Sustainable Approach to Fabricate High-Performance Symmetry Supercapacitor Electrodes from Natural Coconut-Shell-Derived Porous Activated Carbon with Nickel Oxide Nanocomposites. ACS Omega, 10(11), 11077–11090. https://doi.org/10.1021/acsomega.4c09778

Behzadi Pour, G., Nazarpour Fard, H., & Fekri Aval, L. (2024). A Comparison of the Electrical Properties of Gel Polymer Electrolyte-Based Supercapacitors: A Review of Advances in Electrolyte Materials. Gels, 10(12). https://doi.org/10.3390/gels10120803

Chen, W., Xing, Z., Wei, Y., Zhang, X., & Zhang, Q. (2023). High thermal safety and conductivity gel polymer electrolyte composed of ionic liquid [EMIM][BF4] and PVDF-HFP for EDLCs. Polymer, 268(January), 125727. https://doi.org/10.1016/j.polymer.2023.125727

Dos Reis, G. S., Larsson, S. H., de Oliveira, H. P., Thyrel, M., & Lima, E. C. (2020). Sustainable biomass activated carbons as electrodes for battery and supercapacitors–a mini-review. Nanomaterials, 10(7), 1–22. https://doi.org/10.3390/nano10071398

El-Nemr, M. A., Hassaan, M. A., & Ashour, I. (2023). Formation of self-nitrogen-doping activated carbon from Fish/sawdust/ZnCl2 by hydrothermal and pyrolysis for toxic chromium adsorption from wastewater. Scientific Reports, 13(1), 1–24. https://doi.org/10.1038/s41598-023-38697-3

Fan, Q., Guo, P., Xu, D., Zhang, C., Wu, K., Huang, H., Xu, J., Huang, M., Hu, N., Guan, Z., Luo, F., Wang, D., & Zheng, Z. (2025). Exceptional electrochemical properties of coconut shell carbon-phenolic resin composite for supercapacitors. Journal of Energy Storage, 113(February), 115731. https://doi.org/10.1016/j.est.2025.115731

Fan, W., Zhang, H., Wang, H., Zhao, X., Sun, S., Shi, J., Huang, M., Liu, W., Zheng, Y., & Li, P. (2019). Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries. RSC Advances, 9(56), 32382–32394. https://doi.org/10.1039/c9ra06914c

Farma, R., Deraman, M., Awitdrus, A., Talib, I. A., Taer, E., Basri, N. H., Manjunatha, J. G., Ishak, M. M., Dollah, B. N. M., & Hashmi, S. A. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technology, 132, 254–261. https://doi.org/10.1016/j.biortech.2013.01.044

Ganesan, A., Mukherjee, R., Raj, J., & Shaijumon, M. M. (2014). Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage. Journal of Porous Materials, 21(5), 839–847. https://doi.org/10.1007/s10934-014-9833-4

Gao, Y., Liu, C., Jiang, Y., Zhang, Y., Wei, Y., Zhao, G., Liu, R., Liu, Y., Shi, G., & Wang, G. (2024). Hydrothermal assisting biomass into a porous active carbon for high-performance supercapacitors. Diamond and Related Materials, 148(July), 111487. https://doi.org/10.1016/j.diamond.2024.111487

Gillespie, A. K., Smith, A. D., Sweeny, S., Sweeny, M., Piskulich, Z. A., Knight, E., Prosniewski, M., Gillespie, S. M., & Stalla, D. (2025). Biowaste-derived activated carbon from spent coffee grounds for volumetric hydrogen storage. Cleaner Chemical Engineering, 11(December 2024), 100155. https://doi.org/10.1016/j.clce.2025.100155

Haider, R., Sagadevan, S., Cameron, N. R., & Johan, M. R. (2025). Biomass-derived activated carbon for high-performance energy storage devices. Journal of Power Sources, 633(December 2024), 236404. https://doi.org/10.1016/j.jpowsour.2025.236404

Kumar, G. P., & Tripathi, S. K. (2025). Utilization of rice husk-derived activated carbon in dye-sensitized solar cells and advancing hybrid supercapacitor performance through redox additive-infused hydrogel electrolytes. Journal of Energy Storage, 131(PA), 117516. https://doi.org/10.1016/j.est.2025.117516

Li, G., Iakunkov, A., Boulanger, N., Lazar, O. A., Enachescu, M., Grimm, A., & Talyzin, A. V. (2023). Activated carbons with extremely high surface area produced from cones, bark and wood using the same procedure. RSC Advances, 13(21), 14543–14553. https://doi.org/10.1039/d3ra00820g

Liu, J., Deng, Y., Li, X., & Wang, L. (2016). Promising Nitrogen-Rich Porous Carbons Derived from One-Step Calcium Chloride Activation of Biomass-Based Waste for High Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 4(1), 177–187. https://doi.org/10.1021/acssuschemeng.5b00926

Liu, Y., Liu, P., Li, L., Wang, S., Pan, Z., Song, C., & Wang, T. (2021). Fabrication of biomass-derived activated carbon with interconnected hierarchical architecture via H3PO4-assisted KOH activation for high-performance symmetrical supercapacitors. Journal of Electroanalytical Chemistry, 903(November), 115828. https://doi.org/10.1016/j.jelechem.2021.115828

Lu, B., Hu, L., Yin, H., Xiao, W., & Wang, D. (2016). One-step molten salt carbonization (MSC) of firwood biomass for capacitive carbon. RSC Advances, 6(108), 106485–106490. https://doi.org/10.1039/c6ra22191b

Manimekala, T., Sivasubramanian, R., Dar, M. A., & Dharmalingam, G. (2025). Crafting the architecture of biomass-derived activated carbon via electrochemical insights for supercapacitors: a review. RSC Advances, 15(4), 2490–2522. https://doi.org/10.1039/d4ra07682f

Mendhe, A., & Panda, H. S. (2023). A review on electrolytes for supercapacitor device. Discover Materials , 3(1). https://doi.org/10.1007/s43939-023-00065-3

Mir, R. A., Amardeep, A., & Liu, J. (2025). Harnessing Hybrid Aqueous/Organic Electrolytes for High Energy Density Supercapacitors. Small, 21(25), 1–23. https://doi.org/10.1002/smll.202501264

Muflihatun. (2025). Pemanfaatan Karbon Aktif Berbasis Biomassa Lokal sebagai Material Elektroda Superkapasitor: Review. Newton-Maxwell Journal of Physics, 6(1), 22–29. https://doi.org/10.33369/nmj.v6i1.40787

Neme, I., Gonfa, G., & Masi, C. (2022). Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon, 8(12), e11940. https://doi.org/10.1016/j.heliyon.2022.e11940

Nguyen, T. P., Vu, T. N., Nguyen, D. H. M., Ho, T. T. A., Le, M. H., Ton, S. H. T., Tran, H. N., Luu, T. T. M., Nguyen, S. T., & Ho, V. T. T. (2025). Graphitic porous carbon fabricated from waste coffee grounds for supercapacitors. Next Materials, 9(May). https://doi.org/10.1016/j.nxmate.2025.101021

Pal, B., Yang, S., Ramesh, S., Thangadurai, V., & Jose, R. (2019). Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Advances, 1(10), 3807–3835. https://doi.org/10.1039/c9na00374f

Pan, S., Yao, M., Zhang, J., Li, B., Xing, C., Song, X., Su, P., & Zhang, H. (2020). Recognition of Ionic Liquids as High-Voltage Electrolytes for Supercapacitors. Frontiers in Chemistry, 8(May), 1–18. https://doi.org/10.3389/fchem.2020.00261

Pan, Z., Yu, S., Wang, L., Li, C., Meng, F., Wang, N., Zhou, S., Xiong, Y., Wang, Z., Wu, Y., Liu, X., Fang, B., & Zhang, Y. (2023). Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. Nanomaterials, 13(11), 1–33. https://doi.org/10.3390/nano13111744

Peng, H., Ma, G., Sun, K., Zhang, Z., Yang, Q., & Lei, Z. (2016). Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochimica Acta, 190, 862–871. https://doi.org/10.1016/j.electacta.2015.12.195

Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., & Saputera, W. H. (2022). Urea nitrogenated mesoporous activated carbon derived from oil palm empty fruit bunch for high-performance supercapacitor. Journal of Energy Storage, 52(PA), 104724. https://doi.org/10.1016/j.est.2022.104724

Wang, S. U., Huang, H., Yang, P., & Hu, H. (2023). Hierarchical Porous Activated Carbon Derived from Coconut. 1–14.

Yadav, R., Macherla, N., Singh, K., & Kumari, K. (2023). Synthesis and Electrochemical Characterization of Activated Porous Carbon Derived from Walnut Shells as an Electrode Material for Symmetric Supercapacitor Application †. Engineering Proceedings, 59(1), 1–8. https://doi.org/10.3390/engproc2023059175

Yang, W., Li, Y., & Feng, Y. (2018). High electrochemical performance from oxygen functional groups containing porous activated carbon electrode of supercapacitors. Materials, 11(12). https://doi.org/10.3390/ma11122455

Zhou, Y., Li, J., Hu, S., Qian, G., Shi, J., Zhao, S., Wang, Y., Wang, C., & Lian, J. (2022). Sawdust-Derived Activated Carbon with Hierarchical Pores for High-Performance Symmetric Supercapacitors. Nanomaterials, 12(5), 810. https://doi.org/10.3390/nano12050810

Zhu, X., Zeng, Y., Zhao, X., Liu, D., Lei, W., & Lu, S. (2025). Biomass-Derived Carbon and Their Composites for Supercapacitor Applications: Sources, Functions, and Mechanisms. EcoEnergy, 3(3). https://doi.org/10.1002/ece2.70000

Downloads

Published

2025-12-31

Issue

Section

Artikel