Completely Prime Modules for Graded Simple Modules Which is Simple Over Leavitt Path Algebra
DOI:
https://doi.org/10.31958/js.v15i1.9202Keywords:
Completely prime module, Graded simple module, Leavitt path Algebra.Abstract
We characterize a graded simple module  in the setting Leavitt path algebras L which is the completely prime module. Let m  M  and r  A, an A-module M is called a completely prime module if    for one m  M  and r  A then 0  or m = 0. In this article, we show that If u is a sink or an infinite emitter, then a graded simple module which is simple  is not a completely prime module.
References
Abrams, G., & Aranda Pino, G. (2005). The Leavitt path algebra of a graph. Journal of Algebra, 293(2). https://doi.org/10.1016/j.jalgebra.2005.07.028
Abrams, G., Mantese, F., & Tonolo, A. (2015). Extensions of simple modules over Leavitt path algebras. Journal of Algebra, 431. https://doi.org/10.1016/j.jalgebra.2015.01.034
Abrams, G., Rangaswamy, K. M., & Molina, M. S. (2011). The socle series of a Leavitt path algebra. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-011-0074-9
Ara, P., & Pardo, E. (2017). Representing finitely generated refinement monoids as graph monoids. Journal of Algebra, 480. https://doi.org/10.1016/j.jalgebra.2017.02.007
Ara, P., & Rangaswamy, K. M. (2014). Finitely presented simple modules over Leavitt path algebras. Journal of Algebra, 417. https://doi.org/10.1016/j.jalgebra.2014.06.032
Arnone, G., & Cortiñas, G. (2022). Graded K-theory and Leavitt path algebras. Journal of Algebraic Combinatorics. https://doi.org/10.1007/s10801-022-01184-5
Chen, X. W. (2015). Irreducible representations of Leavitt path algebras. Forum Mathematicum. https://doi.org/10.1515/forum-2012-0020
Clark, L. O., Barquero, D. M., Gonzalez, C. M., & ... (2016). Using the Steinberg algebra model to determine the center of any Leavitt path algebra. ArXiv Preprint ArXiv …. https://arxiv.org/abs/1604.01079
Hay, D., Loving, M., Montgomery, M., Ruiz, E., & Todd, K. (2014). Non-stable -theory for Leavitt path algebras. projecteuclid.org. https://doi.org/10.1216/RMJ-2014-44-6-1817.short
Hazrat, R. (2013). The graded structure of Leavitt path algebras. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-012-0138-5
Irawati. (2011). The Generalization of HNP Ring and Finitely Generated Module over HNP Ring. International Journal of Algebra, 5(13).
Pino, G. A., Barquero, D. M., González, C. M., & ... (2010). Socle theory for Leavitt path algebras of arbitrary graphs. Revista Matemática …. https://ems.press/journals/rmi/articles/4627
Rangaswamy, K. M. (2015). On simple modules over Leavitt path algebras. Journal of Algebra, 423. https://doi.org/10.1016/j.jalgebra.2014.10.008
Rangaswamy, K. M. (2020). A survey of some of the recent developments in leavitt path algebras. Leavitt Path Algebras and Classical K-Theory. https://doi.org/10.1007/978-981-15-1611-5_1
Risnawita, Irawati, & Muchtadi-Alamsyah, I. (2021). PRIMENESS OF SIMPLE MODULES OVER PATH ALGEBRAS AND LEAVITT PATH ALGEBRAS. Khayyam Journal of Mathematics, 7(2). https://doi.org/10.22034/kjm.2021.203331.1578
Saleh, K., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On the structure of finitely generated primary modules. JP Journal of Algebra, Number Theory and Applications, 38(5). https://doi.org/10.17654/NT038050519
Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2). https://doi.org/10.17654/NT038020121
Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1). https://doi.org/10.1088/1742-6596/2106/1/012011
Abrams, G., Mantese, F., & Tonolo, A. (2015). Extensions of simple modules over Leavitt path algebras. Journal of Algebra, 431. https://doi.org/10.1016/j.jalgebra.2015.01.034
Abrams, G., Rangaswamy, K. M., & Molina, M. S. (2011). The socle series of a Leavitt path algebra. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-011-0074-9
Ara, P., & Pardo, E. (2017). Representing finitely generated refinement monoids as graph monoids. Journal of Algebra, 480. https://doi.org/10.1016/j.jalgebra.2017.02.007
Ara, P., & Rangaswamy, K. M. (2014). Finitely presented simple modules over Leavitt path algebras. Journal of Algebra, 417. https://doi.org/10.1016/j.jalgebra.2014.06.032
Arnone, G., & Cortiñas, G. (2022). Graded K-theory and Leavitt path algebras. Journal of Algebraic Combinatorics. https://doi.org/10.1007/s10801-022-01184-5
Chen, X. W. (2015). Irreducible representations of Leavitt path algebras. Forum Mathematicum. https://doi.org/10.1515/forum-2012-0020
Clark, L. O., Barquero, D. M., Gonzalez, C. M., & ... (2016). Using the Steinberg algebra model to determine the center of any Leavitt path algebra. ArXiv Preprint ArXiv …. https://arxiv.org/abs/1604.01079
Hay, D., Loving, M., Montgomery, M., Ruiz, E., & Todd, K. (2014). Non-stable -theory for Leavitt path algebras. projecteuclid.org. https://doi.org/10.1216/RMJ-2014-44-6-1817.short
Hazrat, R. (2013). The graded structure of Leavitt path algebras. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-012-0138-5
Irawati. (2011). The Generalization of HNP Ring and Finitely Generated Module over HNP Ring. International Journal of Algebra, 5(13).
Pino, G. A., Barquero, D. M., González, C. M., & ... (2010). Socle theory for Leavitt path algebras of arbitrary graphs. Revista Matemática …. https://ems.press/journals/rmi/articles/4627
Rangaswamy, K. M. (2015). On simple modules over Leavitt path algebras. Journal of Algebra, 423. https://doi.org/10.1016/j.jalgebra.2014.10.008
Rangaswamy, K. M. (2020). A survey of some of the recent developments in leavitt path algebras. Leavitt Path Algebras and Classical K-Theory. https://doi.org/10.1007/978-981-15-1611-5_1
Risnawita, Irawati, & Muchtadi-Alamsyah, I. (2021). PRIMENESS OF SIMPLE MODULES OVER PATH ALGEBRAS AND LEAVITT PATH ALGEBRAS. Khayyam Journal of Mathematics, 7(2). https://doi.org/10.22034/kjm.2021.203331.1578
Saleh, K., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On the structure of finitely generated primary modules. JP Journal of Algebra, Number Theory and Applications, 38(5). https://doi.org/10.17654/NT038050519
Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2). https://doi.org/10.17654/NT038020121
Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1). https://doi.org/10.1088/1742-6596/2106/1/012011
Downloads
Published
2023-06-14
Issue
Section
Artikel
License
Copyright (c) 2023 Risnawita Risnawita

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
