Synergistic Catalytic Activity of RuPd Bimetallic Nanoparticles for Efficient Methyl Orange Degradation

Authors

  • Elvy Rahmi Mawarnis (Scopus ID: 56376053500) Universitas Islam Negeri Mahmud Yunus Batusangkar

Abstract

Bimetallic RuPd nanoparticles (RuPd NPs) were successfully synthesized on indium tin oxide (ITO) substrates via a liquid-phase deposition method and evaluated for catalytic hydrogenation of methyl orange under microwave irradiation. Structural and morphological analyses reveal that Ru incorporation induces a transformation from irregular Pd nanoparticles to hierarchical cauliflower-like RuPd nanostructures composed of nanospherical subunits. XRD, TEM, and EDX analyses confirm the formation of an alloyed Ru–Pd phase with tunable elemental distribution. The catalytic  performance  strongly  depends  on  Ru  precursor

concentration, with an optimal value of 0.27 mM yielding a high kinetic rate constant of 1.1 × 10⁻² s⁻¹. The catalyst exhibits excellent turnover number (7,658) and turnover frequency (4.7 × 10¹ s⁻¹). Enhanced catalytic activity is attributed to Ru-induced electronic

modulation of the Pd d-band, promoting superior hydrogenation efficiency.

 

References

Abarca, G., Dupont, J., & Spencer, J. (2021). Ru–Pd bimetallic nanoparticles in ionic liquids as efficient catalysts for selective hydrogenation reactions. New Journal of Chemistry, 45(5), 2147–2156. https://doi.org/10.1039/D0NJ02674C

Arif, M., Zhang, X., Li, Y., & Wang, J. (2025). Catalytic reduction and degradation of methyl orange using metal-based nanocatalysts: A critical review. RSC Advances, 15, 10234–10258. https://doi.org/10.1039/D5RA04059K

Astruc, D. (2017). Introduction: Nanoparticles in catalysis. Chemical Reviews, 117(13), 8675–8677. https://doi.org/10.1021/acs.chemrev.7b00285

Balouch, A., Umar, A. A., Shah, A. H., Salleh, M. M., & Oyama, M. (2013). Controlled growth of platinum nanoparticles on ITO substrates by liquid-phase deposition. Electrochimica Acta, 111, 663–671. https://doi.org/10.1016/j.electacta.2013.08.021

Balouch, A., Shah, A. H., Umar, A. A., & Salleh, M. M. (2015). Microwave-assisted catalytic degradation of organic pollutants using noble metal nanostructures. Applied Catalysis A: General, 495, 75–82. https://doi.org/10.1016/j.apcata.2015.01.019

Bell, A. T., Head-Gordon, M., & Nørskov, J. K. (2022). Structure–activity relationships in heterogeneous catalysis. ACS Catalysis, 12(8), 4751–4766. https://doi.org/10.1021/acscatal.2c00345

Boudart, M. (2018). Turnover rates in heterogeneous catalysis. Chemical Reviews, 118(15), 8355–8378. https://doi.org/10.1021/acs.chemrev.8b00137

Cao, S., Tao, F. F., Tang, Y., Li, Y., & Yu, J. (2018). Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chemical Society Reviews, 47(4), 1277–1299. https://doi.org/10.1039/C7CS00576A

Chen, J., Li, Y., Zhang, X., & Wang, H. (2015). Composition-controlled RuPd bimetallic catalysts for enhanced hydrogenation activity. Chemical Engineering Journal, 262, 124–132. https://doi.org/10.1016/j.cej.2014.09.095

Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2016). Increasing solar absorption for photocatalysis with black TiO₂ nanocrystals. Science, 331(6018), 746–750. https://doi.org/10.1126/science.1200448

Corma, A., García, H., & Leyva-Pérez, A. (2021). Synergistic effects in bimetallic heterogeneous catalysis. Accounts of Chemical Research, 54(2), 405–416. https://doi.org/10.1021/acs.accounts.0c00625

Horikoshi, S., & Serpone, N. (2016). Role of microwaves in heterogeneous catalytic systems. Catalysis Today, 273, 2–15. https://doi.org/10.1016/j.cattod.2016.01.036

Kappe, C. O. (2020). Controlled microwave heating in modern organic synthesis. Angewandte Chemie International Edition, 59(24), 9576–9589. https://doi.org/10.1002/anie.201916233

Kim, J. H., Lee, S. H., & Park, J. Y. (2017). Metal–support interactions of noble metal nanoparticles on conductive oxide substrates. Journal of Physical Chemistry C, 121(32), 17677–17685. https://doi.org/10.1021/acs.jpcc.7b05541

Li, X., Sun, Y., Zhang, Z., & Wang, Y. (2022). Synergistic catalytic behavior of Ru–Pd bimetallic nanocatalysts in hydrogenation reactions. Applied Catalysis B: Environmental, 301, 120785. https://doi.org/10.1016/j.apcatb.2021.12078

Li, Y., Zhang, Q., & Somorjai, G. A. (2020). Nanoparticle size and shape effects in catalysis. Journal of the American Chemical Society, 142(22), 9731–9740. https://doi.org/10.1021/jacs.0c02069

Liu, J., Wang, Y., & Chen, M. (2021). Electronic effects in Pd-based bimetallic catalysts for hydrogenation reactions. ACS Catalysis, 11(3), 1679–1690. https://doi.org/10.1021/acscatal.0c04523

Nørskov, J. K., Bligaard, T., Rossmeisl, J.,& Christensen, C. H. (2015). Towards the computational design of solid catalysts. Nature Chemistry, 1(1), 37–46. https://doi.org/10.1038/nchem.121

Riaz, S., Ahmad, R., Khan, M. S., & Hussain, M. (2024). Degradation of methyl orange from aqueous solutions using heterogeneous catalysts. Sustainability, 16(16), 6958. https://doi.org/10.3390/su16166958

Sankar, M., He, Q., Engel, R. V., Sainna, M. A., Logsdail, A. J., Roldan, A., … Hutchings, G. J. (2020). Role of bimetallic catalysts in selective hydrogenation reactions. Chemical Reviews, 120(8), 3890–3938. https://doi.org/10.1021/acs.chemrev.9b00648

Sun, H., Zhao, Y., Liu, Z., & Wang, X. (2024). Composition-dependent catalytic performance of Ru-based bimetallic nanoparticles. Journal of Colloid and Interface Science, 656, 1–11. https://doi.org/10.1016/j.jcis.2023.11.032

Tomin, T., Lazarev, V., Bere, K., Redjeb, A., & Török, B. (2012). Water as a hydrogen source in microwave-assisted catalytic hydrogenation. Green Chemistry, 14(9), 2540–2544. https://doi.org/10.1039/C2GC35756E

Wang, J., Li, H., Zhang, X., & Chen, Y. (2023). d-band center modulation in Ru–Pd alloy catalysts for hydrogenation reactions. ACS Catalysis, 13(6), 3564–3575. https://doi.org/10.1021/acscatal.3c00412

Wang, Z., Sun, Q., & Zhang, T. (2018). Microwave-assisted catalytic degradation of organic pollutants. Chemical Engineering Journal, 334, 2295–2304. https://doi.org/10.1016/j.cej.2017.11.056

Zaleska-Medynska, A., Marchelek, M., Diak, M., & Grabowska, E. (2018). Noble metal-based photocatalysts for environmental applications. Advances in Colloid and Interface Science, 256, 1–24. https://doi.org/10.1016/j.cis.2018.03.003

Zhang, S., Li, J., & Chen, G. (2019). Palladium- based nanocatalysts for hydrogenation reactions. Catalysis Today, 319, 163–173. https://doi.org/10.1016/j.cattod.2018.05.021

Zhao, Y., Xu, C., & Wang, D. (2022). Conductive oxide supports for heterogeneous catalysis. Journal of Materials Chemistry A, 10(15), 8211–8225. https://doi.org/10.1039/D2TA00547F

Downloads

Published

2025-12-31

Issue

Section

Artikel