Analisis Pelaksanaan Tradisi Akad Pagang Gadai di Nagari Panyalaian ditinjau dari Perspektif Hukum Islam

Authors

  • Rania Salsa UIN Mahmud Yunus Batusangkar
  • Vima Tista Putriana Universitas Andalas

DOI:

https://doi.org/10.31958/jtm.v10i1.11835

Keywords:

Akad, Pagang Gadai, Hukum Islam

Abstract

This study examines the Analysis of the Implementation of the Pagang Gadai Tradition in Nagari Panyalaian reviewed from the Perspective of Islamic Law. The problem is how the practice of pawning is carried out by the community in Nagari Panyalaian, precisely in Tanah Datar Regency from the Perspective of Islamic Law, then how is the implementation system of the Pagang Gadai contract in Nagari Panyalaian and whether there are elements of Usury in the implementation of Pagang Gadai in Nagari Panyalaian or not according to the current picture (conflict). Research data were obtained from Interviews and Documentation of Pagang Gadai Agreements. Data analysis uses Miles And Huberman analysis which includes data collection, data reduction, data presentation and drawing data conclusions. The results found that some areas in Nagari Panyalaian that carry out Pagang Gadai activities contain elements of usury, and (gharar).

References

Abrams, G., & Aranda Pino, G. (2005). The Leavitt path algebra of a graph. Journal of Algebra, 293(2). https://doi.org/10.1016/j.jalgebra.2005.07.028

Abrams, G., Mantese, F., & Tonolo, A. (2015). Extensions of simple modules over Leavitt path algebras. Journal of Algebra, 431. https://doi.org/10.1016/j.jalgebra.2015.01.034

Abrams, G., Rangaswamy, K. M., & Molina, M. S. (2011). The socle series of a Leavitt path algebra. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-011-0074-9

Ara, P., & Pardo, E. (2017). Representing finitely generated refinement monoids as graph monoids. Journal of Algebra, 480. https://doi.org/10.1016/j.jalgebra.2017.02.007

Ara, P., & Rangaswamy, K. M. (2014). Finitely presented simple modules over Leavitt path algebras. Journal of Algebra, 417. https://doi.org/10.1016/j.jalgebra.2014.06.032

Arnone, G., & Cortiñas, G. (2022). Graded K-theory and Leavitt path algebras. Journal of Algebraic Combinatorics. https://doi.org/10.1007/s10801-022-01184-5

Chen, X. W. (2015). Irreducible representations of Leavitt path algebras. Forum Mathematicum. https://doi.org/10.1515/forum-2012-0020

Clark, L. O., Barquero, D. M., Gonzalez, C. M., & ... (2016). Using the Steinberg algebra model to determine the center of any Leavitt path algebra. ArXiv Preprint ArXiv …. https://arxiv.org/abs/1604.01079

Hay, D., Loving, M., Montgomery, M., Ruiz, E., & Todd, K. (2014). Non-stable -theory for Leavitt path algebras. projecteuclid.org. https://doi.org/10.1216/RMJ-2014-44-6-1817.short

Hazrat, R. (2013). The graded structure of Leavitt path algebras. Israel Journal of Mathematics. https://doi.org/10.1007/s11856-012-0138-5

Irawati. (2011). The Generalization of HNP Ring and Finitely Generated Module over HNP Ring. International Journal of Algebra, 5(13).

Pino, G. A., Barquero, D. M., González, C. M., & ... (2010). Socle theory for Leavitt path algebras of arbitrary graphs. Revista Matemática …. https://ems.press/journals/rmi/articles/4627

Rangaswamy, K. M. (2015). On simple modules over Leavitt path algebras. Journal of Algebra, 423. https://doi.org/10.1016/j.jalgebra.2014.10.008

Rangaswamy, K. M. (2020). A survey of some of the recent developments in leavitt path algebras. Leavitt Path Algebras and Classical K-Theory. https://doi.org/10.1007/978-981-15-1611-5_1

Risnawita, Irawati, & Muchtadi-Alamsyah, I. (2021). PRIMENESS OF SIMPLE MODULES OVER PATH ALGEBRAS AND LEAVITT PATH ALGEBRAS. Khayyam Journal of Mathematics, 7(2). https://doi.org/10.22034/kjm.2021.203331.1578

Saleh, K., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On the structure of finitely generated primary modules. JP Journal of Algebra, Number Theory and Applications, 38(5). https://doi.org/10.17654/NT038050519

Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2). https://doi.org/10.17654/NT038020121

Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1). https://doi.org/10.1088/1742-6596/2106/1/012011

Published

2024-06-30